The Kernel Orthogonal Mutual Subspace Method and Its Application to 3D Object Recognition
نویسندگان
چکیده
This paper proposes the kernel orthogonal mutual subspace method (KOMSM) for 3D object recognition. KOMSM is a kernel-based method for classifying sets of patterns such as video frames or multi-view images. It classifies objects based on the canonical angles between the nonlinear subspaces, which are generated from the image patterns of each object class by kernel PCA. This methodology has been introduced in the kernel mutual subspace method (KMSM). However, KOMSM is different from KMSM in that nonlinear class subspaces are orthogonalized based on the framework proposed by Fukunaga and Koontz before calculating the canonical angles. This orthogonalization provides a powerful feature extraction method for improving the performance of KMSM. The validity of KOMSM is demonstrated through experiments using face images and images from a public database.
منابع مشابه
A Framework for 3D Object Recognition Using the Kernel Constrained Mutual Subspace Method
This paper introduces the kernel constrained mutual subspace method (KCMSM) and provides a new framework for 3D object recognition by applying it to multiple view images. KCMSM is a kernel method for classifying a set of patterns. An input pattern x is mapped into the high-dimensional feature space F via a nonlinear function φ, and the mapped pattern φ(x) is projected onto the kernel generalize...
متن کاملHand Shape Recognition Based on Kernel Orthogonal Mutual Subspace Method
This paper proposes a method of recognizing a hand shape using multiple view images. The recognition of a hand is a difficult problem, as its appearance changes largely depending on view point, illumination condition and individual characteristics. To overcome this problem, we apply the Kernel Orthogonal Mutual Subspace Method to shift invariant features, HLAC(Higherorder Local Auto-Correlation...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملHand-Shape Recognition Using the Distributions of Multi-Viewpoint Image Sets
This paper proposes a method for recognizing handshapes by using multi-viewpoint image sets. The recognition of a handshape is a difficult problem, as appearance of the hand changes largely depending on viewpoint, illumination conditions and individual characteristics. To overcome this problem, we apply the Kernel Orthogonal Mutual Subspace Method (KOMSM) to shift-invariance features obtained f...
متن کاملGeneralized Mutual Subspace Based Methods for Image Set Classification
The subspace-based methods are effectively applied to classify sets of feature vectors by modeling them as subspaces. It is, however, difficult to appropriately determine the subspace dimensionality in advance for better performance. For alleviating such issue, we present a generalized mutual subspace method by introducing soft weighting across the basis vectors of the subspace. The bases are e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007